RESEARCH REFERENCES
- , and (2013) Non-enzymic copper reduction by menaquinone enhances copper toxicity in Lactococcus lactis IL1403. Microbiology 159, 1190– 1197. ,
- and (2002) Molecular characterization of an operon, cueAR, encoding a putative P1-type ATPase and a MerR-type regulatory protein involved in copper homeostasis in Pseudomonas putida. Microbiology 148, 2857– 2867.
- , , , , and (2013) Occurrence of the transferable copper resistance gene tcrB among fecal enterococci of U.S. feedlot cattle fed copper-supplemented diets. Appl Environ Microbiol 79, 4369– 4375. ,
- , , , , and (2015) Effects of in-feed copper, chlortetracycline, and tylosin on the prevalence of transferable copper resistance gene, tcrB, among fecal enterococci of weaned piglets. Foodborne Pathog Dis 12, 670– 678. ,
- and (2017) Copper Resistance in Aspergillus nidulans Relies on the PI-Type ATPase CrpA, Regulated by the Transcription Factor AceA. Front Microbiol 8, 912. ,
- , , , , and (2012) Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8, 3326– 3337. ,
- , , and (2012) Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int J Nanomedicine 7, 3527– 3535. ,
- , , , , and (2013) Abundance and diversity of copper resistance genes cusA and copA in microbial communities in relation to the impact of copper on Chilean marine sediments. Mar Pollut Bull 67, 16– 25. ,
- and (2016) The Yin and Yang of copper during infection. J Biol Inorg Chem 21, 137– 144. ,
- , , and (2014) Inactivation of bacterial and viral biothreat agents on metallic copper surfaces. Biometals 27, 1179– 1189. ,
- , , , , , and (2015) Nanomaterial with high antimicrobial efficacy–copper/polyaniline nanocomposite. ACS Appl Mater Interfaces 7, 1955– 1966. ,
- , , and (2008) Deactivation of human immunodeficiency virus type 1 in medium by copper oxide-containing filters. Antimicrob Agents Chemother 52, 518– 525. ,
- , and (2010) A novel anti-influenza copper oxide containing respiratory face mask. PLoS ONE 5, e11295. ,
- , , and (1989) The CUP2 gene product, regulator of yeast metallothionein expression, is a copper-activated DNA-binding protein. Mol Cell Biol 9, 4091– 4095. ,
- , , , , , , et al. (2010) Role of copper in reducing hospital environment contamination. J Hosp Infect 74, 72– 77. ,
- and (2014) Pathogenic adaptations to host-derived antibacterial copper. Front Cell Infect Microbiol 4, 3.
- , , and (2012) The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat Chem Biol 8, 731– 736. ,
- , , , , and (2014) Cupric yersiniabactin is a virulence-associated superoxide dismutase mimic. ACS Chem Biol 9, 551– 561. ,
- , , , and (1999) The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett 445, 27– 30. ,
- , , , and (2011) The combined actions of the copper-responsive repressor CsoR and copper-metallochaperone CopZ modulate CopA-mediated copper efflux in the intracellular pathogen Listeria monocytogenes. Mol Microbiol 81, 457– 472. ,
- , , , , , , et al. (2014) Susceptibility of opportunistic Burkholderia glumae to copper surfaces following wet or dry surface contact. Molecules 19, 9975– 9985. ,
- and (2017) Copper and antibiotics: discovery, modes of action, and opportunities for medicinal applications. Adv Microb Physiol 70, 193– 260. ,
- , , , , , and (2016) Histidine biosynthesis plays a crucial role in metal homeostasis and virulence of Aspergillus fumigatus. Virulence 7, 465– 476. ,
- , , , , , , et al. (2013) Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence. Cell Host Microbe 13, 265– 276. ,
- , and (2015) The role of copper and zinc toxicity in innate immune defense against bacterial pathogens. J Biol Chem 290, 18954– 18961. ,
- and (1985) Historic uses of copper compounds in medicine. Trace Elem Med 2, 80– 87.
- , , , and (2012) Response to copper stress in Streptomyces lividans extends beyond genes under direct control of a copper-sensitive operon repressor protein (CsoR). J Biol Chem 287, 17833– 17847. ,
- and (2009) Genes involved in copper resistance influence survival of Pseudomonas aeruginosa on copper surfaces. J Appl Microbiol 106, 1448– 1455. ,
- and (2017) In-situ deposition of Cu2O micro-needles for biologically active textiles and their release properties. Carbohydr Polym 165, 255– 265. ,
- , and (2008) Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces. Appl Environ Microbiol 74, 977– 986. ,
- , , , , and (2011) Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol 77, 794– 802. ,
- and (2012) Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. MicrobiologyOpen 1, 46– 52. ,
- , and (2004) Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol 4, 19. ,
- and (2011) Copper: an essential metal in biology. Curr Biol 21, R877– R883.
- , , , , , and (2011) A novel copper-responsive regulon in Mycobacterium tuberculosis. Mol Microbiol 79, 133– 148. ,
- , , , , , and (2012) Novel antiviral characteristics of nanosized copper(I) iodide particles showing inactivation activity against 2009 pandemic H1N1 influenza virus. Appl Environ Microbiol 78, 951– 955. ,
- , and (1997) The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. J Biol Chem 272, 13786– 137892. ,
- , , and (2016) Microbial virulence and interactions with metals. Prog Mol Biol Transl Sci 142, 27– 49. ,
- , and (2012) In vitro susceptibility of filamentous fungi to copper nanoparticles assessed by rapid XTT colorimetry and agar dilution method. J Mycol Med 22, 322– 328. ,
- , , and (2014) Hydrothermal synthesis of copper based nanoparticles: antimicrobial screening and interaction with DNA. J Inorg Biochem 133, 24– 32. ,
- , and (2012) The CopRS two-component system is responsible for resistance to copper in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 159, 1806– 1818. ,
- and (2015) CopM is a novel copper-binding protein involved in copper resistance in Synechocystis sp. PCC 6803. MicrobiologyOpen 4, 167– 185. ,
- , , , and (2016) Extracellular proteins: novel key components of metal resistance in cyanobacteria? Front Microbiol 7, 878. ,
- , , , , , and (2008) Identification of a copper-binding metallothionein in pathogenic mycobacteria. Nat Chem Biol 4, 609– 616. ,
- , and (2017) Medical equipment antiseptic processes using the atmospheric plasma sprayed copper coatings. J X-Ray Sci Technol 25, 479– 485. ,
- and (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77, 1541– 1547. ,
- , , , , , and (2011) Control of copper resistance and inorganic sulfur metabolism by paralogous regulators in Staphylococcus aureus. J Biol Chem 286, 13522– 13531. ,
- , , , , , , et al. (2015) Proteomic analysis of the copper resistance of Streptococcus pneumoniae. Metallomics 7, 448– 454. ,
- , , , , , and (2017) The role of copper nanoparticles in an etch-and-rinse adhesive on antimicrobial activity, mechanical properties and the durability of resin-dentine interfaces. J Dent 61, 12– 20. ,
- and (2017) Colloid particle formulations for antimicrobial applications. Adv Colloid Interface Sci 249, 134– 148. ,
- , , , and (2015) Antiviral activity of cuprous oxide nanoparticles against hepatitis C virus in vitro. J Virol Methods 222, 150– 157. ,
- , and (2016) Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases 11, 018902. ,
- and (1995) Bactericidal effect of hydrogen peroxide on Escherichia coli. Ann Médicales de NANCY et de l'Est 34, 85– 88. ,
- (2005) The tcrB gene is part of the tcrYAZB operon conferring copper resistance in Enterococcus faecium and Enterococcus faecalis. Microbiology 151, 3019– 3025.
- and (2002) tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptide resistance. Antimicrob Agents Chemother 46, 1410– 1416.
- , , , , , and (2006) Copper resistance in Enterococcus faecium, mediated by the tcrB gene, is selected by supplementation of pig feed with copper sulfate. Appl Environ Microbiol 72, 5784– 5789. ,
- , and (2012) Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli. Appl Environ Microbiol 78, 1776– 1784. ,
- and (2005) Anticancer metal compounds in NCI's tumor-screening database: putative mode of action. Biochem Pharmacol 69, 1009– 1039. ,
- (2017) Molecular features of copper binding proteins involved in copper homeostasis. IUBMB Life 69, 211– 217.
- , , and (2017) Copper as an antibacterial material in different facilities. Lett Appl Microbiol 64, 19– 26. ,
- , and (2011) Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans. Yeast 28, 629– 644. ,
- , and (2009) Size-dependent toxicity of metal oxide particles–a comparison between nano- and micrometer size. Toxicol Lett 188, 112– 118. ,
- and (1991) Copper inhibits the protease from human immunodeficiency virus 1 by both cysteine-dependent and cysteine-independent mechanisms. Proc Natl Acad Sci USA 88, 5552– 5556.
- , , , , and (2012) The antimicrobial efficacy of copper alloy furnishing in the clinical environment: a crossover study. Infect Control Hosp Epidemiol 33, 3– 9. ,
- , , and (2015) Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids Surf B Biointerfaces 128, 17– 22. ,
- and (1997) Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway. J Biol Chem 272, 15951– 15958. ,
- and (2015) Copper tolerance and virulence in bacteria. Metallomics 7, 957– 964.
- and (1989) Efficacy of copper and silver ions and reduced levels of free chlorine in inactivation of Legionella pneumophila. Appl Environ Microbiol 55, 3045– 3050. ,
- and (2002) The Haber-Weiss cycle – 70 years later: an alternative view. Redox Rep 7, 55– 57.
- and (1997) Yeast metallothionein gene expression in response to metals and oxidative stress. Methods 11, 289– 299.
- and (2016) Small colony variants are more susceptible to copper-mediated contact killing for Pseudomonas aeruginosa and Staphylococcus aureus. J Med Microbiol 65, 1143– 1151.
- , , , , , , et al. (2007) CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol 3, 60– 68. ,
- , , , , and (2014) Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys. Mater Sci Eng C Mater Biol Appl 35, 392– 400. ,
- and (2001) Copper-induced proteolysis of the CopZ copper chaperone of Enterococcus hirae. J Biol Chem 276, 47822– 47827.
- , , , , , and (2016) Host-imposed copper poisoning impacts fungal micronutrient acquisition during systemic Candida albicans infections. PLoS ONE 11, e0158683. ,
- and (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci USA 106, 8344– 8349.
- , and (2008) Characterization of the CopR regulon of Lactococcus lactis IL1403. J Bacteriol 190, 536– 545. ,
- , , , , , , et al. (2017) Green fabricated CuO nanobullets via Olea europaea leaf extract shows auspicious antimicrobial potential. IET Nanobiotechnol 11, 463– 468. ,
- , and (2016) CsoR is essential for maintaining copper homeostasis in Mycobacterium tuberculosis. PLoS ONE 11, e0151816. ,
- and (2004) The CaCTR1 gene is required for high-affinity iron uptake and is transcriptionally controlled by a copper-sensing transactivator encoded by CaMAC1. Microbiology 150, 2197– 2208. ,
- and (2015) Copper reduction and contact killing of bacteria by iron surfaces. Appl Environ Microbiol 81, 6399– 6403. ,
- and (2012) Metal export by CusCFBA, the periplasmic Cu(I)/Ag(I) transport system of Escherichia coli. Curr Top Membr 69, 163– 196. ,
- and (2008) The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study. J Hosp Infect 68, 45– 51. ,
- and (2009) Effects of temperature and humidity on the efficacy of methicillin-resistant Staphylococcus aureus challenged antimicrobial materials containing silver and copper. Lett Appl Microbiol 49, 191– 195. ,
- , , , , and (2009) Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study. Small 5, 389– 399. ,
- , and (2017) Bacterial metallothioneins. Postepy Mikrobiol 56, 171– 179. ,
- , , , and (2010) Survival of bacteria on metallic copper surfaces in a hospital trial. Appl Microbiol Biotechnol 87, 1875– 1879. ,
- and (1993) A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae. J Bacteriol 175, 1656– 1664. ,
- and (2010) Killing of bacteria by copper surfaces involves dissolved copper. Appl Environ Microbiol 76, 4099– 4101. ,
- , and (2001) Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance. Biochem Biophys Res Commun 288, 172– 177. ,
- , , , and (2009) Functional and expression analyses of the cop operon, required for copper resistance in Agrobacterium tumefaciens. J Bacteriol 191, 5159– 5168. ,
- and (2006) Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing. Appl Environ Microbiol 72, 4239– 4244. ,
- and (2007) Inactivation of influenza A virus on copper versus stainless steel surfaces. Appl Environ Microbiol 73, 2748– 2750. ,
- and (1995) Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae. J Biol Chem 270, 4349– 4354.
- , , and (1996) Copper-dependent degradation of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p in the apparent absence of endocytosis. EMBO J 15, 3515– 3523. ,
- , , , , and (2013) The copper supply pathway to a Salmonella Cu, Zn-superoxide dismutase (SodCII) involves P(1B)-type ATPase copper efflux and periplasmic CueP. Mol Microbiol 87, 466– 477. ,
- , and (2000) Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR. J Biol Chem 275, 31024– 31029. ,
- and (2011) The RSP_2889 gene product of Rhodobacter sphaeroides is a CueR homologue controlling copper-responsive genes. Microbiology 157, 3306– 3313. ,
- , and (2016) Compartment and signal-specific codependence in the transcriptional control of Salmonella periplasmic copper homeostasis. Proc Natl Acad Sci USA 113, 11573– 11578. ,
- , , and (2013) Antibacterial activity of nanocomposites of copper and cellulose. Biomed Res Int 2013, 280512. ,
- and (2009) Alternative periplasmic copper-resistance mechanisms in Gram negative bacteria. Mol Microbiol 73, 212– 225.
- and (2012) Application of copper bactericidal properties in medical practice. Rev Médica Chile 140, 1325– 1332. ,
- , , and (2012) A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids Surf B Biointerfaces 96, 50– 55. ,
- and (1992) Efficacy of copper and silver ions with iodine in the inactivation of Pseudomonas cepacia. J Appl Bacteriol 72, 71– 79. ,
- , , , and (2017) Metallic nanoparticles to eradicate bacterial bone infection. Nanomedicine 13, 2241– 2250. ,
- , , , , and (2011) Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces. Appl Environ Microbiol 77, 416– 426. ,
- and (2012) Copper-responsive gene regulation in bacteria. Microbiology 158, 2451– 2464.
- , , , and (2012) Transcriptional and posttranscriptional events control copper-responsive expression of a Rhodobacter capsulatus multicopper oxidase. J Bacteriol 194, 1849– 1859. ,
- , , , , and (2010) Genome-wide transcriptome analysis of the adaptive response of Enterococcus faecalis to copper exposure. Biometals 23, 1105– 1112. ,
- and (2000) Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J Bacteriol 182, 4899– 4905.
- and (2013) A multicopper oxidase is required for copper resistance in Mycobacterium tuberculosis. J Bacteriol 195, 3724– 3733.
- , , and (2010) Structural and functional characterization of the transcriptional repressor CsoR from Thermus thermophilus HB8. Microbiology 156, 1993– 2005. ,
- , and (2015) Antimicrobial copper alloy surfaces are effective against vegetative but not sporulated cells of gram-positive Bacillus subtilis. MicrobiologyOpen 4, 753– 763. ,
- , , and (2011) The two-component signal transduction system CopRS of Corynebacterium glutamicum is required for adaptation to copper-excess stress. PLoS ONE 6, e22143. ,
- , , , , , , et al. (2012) Sustained reduction of microbial burden on common hospital surfaces through introduction of copper. J Clin Microbiol 50, 2217– 2223. ,
- , , , , , and (2017) Antimicrobial copper alloys decreased bacteria on stethoscope surfaces. Am J Infect Control 45, 642– 647. ,
- , , and (2005) Mutations in the cueA gene encoding a copper homeostasis P-type ATPase reduce the pathogenicity of Pseudomonas aeruginosa in mice. Int J Med Microbiol 295, 237– 422. ,
- , , , , , and (2011) The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae. Mol Microbiol 81, 1255– 1270. ,
- and (2014) Properties and characterization of agar/CuNP bionanocomposite films prepared with different copper salts and reducing agents. Carbohydr Polym 114, 484– 492. ,
- , , , , and (2014) The copper-responsive RicR regulon contributes to Mycobacterium tuberculosis virulence. MBio 5, e00876-13. ,
- , and (2015) The copYAZ operon functions in copper efflux, biofilm formation, genetic transformation, and stress tolerance in Streptococcus mutans. J Bacteriol 197, 2545– 2557. ,
- and (2007) CsoR regulates the copper efflux operon copZA in Bacillus subtilis. Microbiology 153, 4123– 4128.
- (2002) Role of proteolysis in copper homoeostasis. Biochem Soc Trans 30, 688– 691.
- and (1995) Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J Biol Chem 270, 9217– 9221.
- and (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27, 183– 195.
- , , , , and (2013) Antimicrobial activity of copper surfaces against carbapenemase-producing contemporary Gram-negative clinical isolates. J Antimicrob Chemother 68, 852– 857. ,
- , , and (2013) Porins increase copper susceptibility of Mycobacterium tuberculosis. J Bacteriol 195, 5133– 5140. ,
- and (1989) A cysteine-rich nuclear protein activates yeast metallothionein gene transcription. Mol Cell Biol 9, 421– 429.
- and (1975) Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29, 807– 813.
- and (2010) Quorum-sensing regulation of a copper toxicity system in Pseudomonas aeruginosa. J Bacteriol 192, 2557– 2568. ,
- and (2013) Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomedicine 8, 889– 898.
- (1988) ACE1 regulates expression of the Saccharomyces cerevisiae metallothionein gene. Mol Cell Biol 8, 2745– 2752.
- , , , , , , et al. (2012) Copper as an antimicrobial agent against opportunistic pathogenic and multidrug resistant Enterobacter bacteria. J Microbiol 50, 586– 593. ,
- , , , and (2013) Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine 8, 4467– 4479. ,
- and (2001) Characterization of a copper-transport operon, copYAZ, from Streptococcus mutans. Microbiology 147, 653– 662.
- and (2016) Antimicrobial applications of copper. Int J Hyg Environ Health 219, 585– 591. ,
- , , and (2005) The Helicobacter pylori CrdRS two-component regulation system (HP1364/HP1365) is required for copper-mediated induction of the copper resistance determinant CrdA. J Bacteriol 187, 4683– 4688. ,
- , , , and (2012) CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chem Res Toxicol 25, 1512– 1521. ,
- , , and (2010) CtpV: a putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol Microbiol 77, 1096– 1110. ,
- and (2011) Mechanism of copper surface toxicity in vancomycin-resistant enterococci following wet or dry surface contact. Appl Environ Microbiol 77, 6049– 6059.
- and (2013) Inactivation of norovirus on dry copper alloy surfaces. PLoS ONE 8, e75017.
- and (2016) Lack of involvement of fenton chemistry in death of methicillin-resistant and methicillin-sensitive strains of Staphylococcus aureus and destruction of their genomes on wet or dry copper alloy surfaces. Appl Environ Microbiol 82, 2132– 2136.
- , and (2010) Biocidal efficacy of copper alloys against pathogenic enterococci involves degradation of genomic and plasmid DNAs. Appl Environ Microbiol 76, 5390– 5401. ,
- and (2012) Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria. Environ Microbiol 14, 1730– 1743. ,
- and (2015) Inactivation of murine norovirus on a range of copper alloy surfaces is accompanied by loss of capsid integrity. Appl Environ Microbiol 81, 1085– 1091. ,
- and (2008) Survival of Clostridium difficile on copper and steel: futuristic options for hospital hygiene. J Hosp Infect 68, 145– 151. ,
- , and (2010) Potential action of copper surfaces on meticillin-resistant Staphylococcus aureus. J Appl Microbiol 109, 2200– 2205. ,
- , , and (2014) Polymer antimicrobial coatings with embedded fine Cu and Cu salt particles. Appl Microbiol Biotechnol 98, 6265– 6274. ,
- , and (2000) The high copper tolerance of Candida albicans is mediated by a P-type ATPase. Proc Natl Acad Sci USA 97, 3520– 3525. ,
- , , , and (2008) Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: the germination theory. J Antimicrob Chemother 62, 522– 525. ,
- , , , , , , et al. (2017) Aspergillus fumigatus copper export machinery and reactive oxygen intermediate defense counter host copper-mediated oxidative antimicrobial offense. Cell Rep 19, 1008– 1021. ,
- and (2005) The survival of Escherichia coli O157 on a range of metal surfaces. Int J Food Microbiol 105, 445– 454. ,
- , , , , , , et al. (2011) Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 108, 1621– 1626. ,
- , and (2008) Copper-dependent transcriptional regulation by Candida albicans Mac1p. Microbiology 154, 1502– 1512. ,
- , , , , and (1997) Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1. J Biol Chem 272, 17711– 17718. ,
- , , and (2015) Copper tolerance and characterization of a copper-responsive operon, copYAZ, in an M1T1 clinical strain of Streptococcus pyogenes. J Bacteriol 197, 2580– 2592. ,
- and (2008) Regulation of copper homeostasis in Pseudomonas fluorescens SBW25. Environ Microbiol 10, 3284– 3294.
- , , , , and (2013) A new antibacterial titanium-copper sintered alloy: preparation and antibacterial property. Mater Sci Eng C Mater Biol Appl 33, 4280– 4287. ,
- , , , and (2016) Effects of CTR4 deletion on virulence and stress response in Cryptococcus neoformans. Antonie Van Leeuwenhoek 109, 1081– 1090. ,
- , and (2016) Als1 and Als3 regulate the intracellular uptake of copper ions when Candida albicans biofilms are exposed to metallic copper surfaces. FEMS Yeast Res 16, fow029. ,
- , and (2012) Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica. Food Microbiol 30, 303– 310. ,
- , , , , and (2012) PcoE–a metal sponge expressed to the periplasm of copper resistance Escherichia coli. Implication of its function role in copper resistance. J Inorg Biochem 115, 186– 197. ,