Skip to content

RESEARCH REFERENCES

  • Abicht, H.K., Gonskikh, Y., Gerber, S.D. and Solioz, M. (2013) Non-enzymic copper reduction by menaquinone enhances copper toxicity in Lactococcus lactis IL1403. Microbiology 159, 1190 1197.
  • Adaikkalam, V. and Swarup, S. (2002) Molecular characterization of an operon, cueAR, encoding a putative P1-type ATPase and a MerR-type regulatory protein involved in copper homeostasis in Pseudomonas putida. Microbiology 148, 2857 2867.
  • Amachawadi, R.G., Scott, H.M., Alvarado, C.A., Mainini, T.R., Vinasco, J., Drouillard, J.S. and Nagaraja, T.G. (2013) Occurrence of the transferable copper resistance gene tcrB among fecal enterococci of U.S. feedlot cattle fed copper-supplemented diets. Appl Environ Microbiol 79, 4369 4375.
  • Amachawadi, R.G., Scott, H.M., Vinasco, J., Tokach, M.D., Dritz, S.S., Nelssen, J.L. and Nagaraja, T.G. (2015) Effects of in-feed copper, chlortetracycline, and tylosin on the prevalence of transferable copper resistance gene, tcrB, among fecal enterococci of weaned piglets. Foodborne Pathog Dis 12, 670 678.
  • Antsotegi-Uskola, M., Markina-Iñarrairaegui, A. and Ugalde, U. (2017) Copper Resistance in Aspergillus nidulans Relies on the PI-Type ATPase CrpA, Regulated by the Transcription Factor AceA. Front Microbiol 8, 912.
  • Applerot, G., Lellouche, J., Lipovsky, A., Nitzan, Y., Lubart, R., Gedanken, A. and Banin, E. (2012) Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8, 3326 3337.
  • Azam, A., Ahmed, A.S., Oves, M., Khan, M.S. and Memic, A. (2012) Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int J Nanomedicine 7, 3527 3535.
  • Besaury, L., Bodilis, J., Delgas, F., Andrade, S., De la Iglesia, R., Ouddane, B. and Quillet, L. (2013) Abundance and diversity of copper resistance genes cusA and copA in microbial communities in relation to the impact of copper on Chilean marine sediments. Mar Pollut Bull 67, 16 25.
  • Besold, A.N., Culbertson, E.M. and Culotta, V.C. (2016) The Yin and Yang of copper during infection. J Biol Inorg Chem 21, 137 144.
  • Bleichert, P., Espírito Santo, C., Hanczaruk, M., Meyer, H. and Grass, G. (2014) Inactivation of bacterial and viral biothreat agents on metallic copper surfaces. Biometals 27, 1179 1189.
  • Bogdanović, U., Vodnik, V., Mitrić, M., Dimitrijević, S., Škapin, S.D., Žunič, V., Budimir, M. and Stoiljković, M. (2015) Nanomaterial with high antimicrobial efficacy–copper/polyaniline nanocomposite. ACS Appl Mater Interfaces 7, 1955 1966.
  • Borkow, G., Lara, H.H., Covington, C.Y., Nyamathi, A. and Gabbay, J. (2008) Deactivation of human immunodeficiency virus type 1 in medium by copper oxide-containing filters. Antimicrob Agents Chemother 52, 518 525.
  • Borkow, G., Zhou, S.S., Page, T. and Gabbay, J. (2010) A novel anti-influenza copper oxide containing respiratory face mask. PLoS ONE 5, e11295.
  • Buchman, C., Skroch, P., Welch, J., Fogel, S. and Karin, M. (1989) The CUP2 gene product, regulator of yeast metallothionein expression, is a copper-activated DNA-binding protein. Mol Cell Biol 9, 4091 4095.
  • Casey, A.L., Adams, D., Karpanen, T.J., Lambert, P.A., Cookson, B.D., Nightingale, P., Miruszenko, L., Shillam, R. et al. (2010) Role of copper in reducing hospital environment contamination. J Hosp Infect 74, 72 77.
  • Chaturvedi, K.S. and Henderson, J.P. (2014) Pathogenic adaptations to host-derived antibacterial copper. Front Cell Infect Microbiol 4, 3.
  • Chaturvedi, K.S., Hung, C.S., Crowley, J.R., Stapleton, A.E. and Henderson, J.P. (2012) The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat Chem Biol 8, 731 736.
  • Chaturvedi, K.S., Hung, C.S., Giblin, D.E., Urushidani, S., Austin, A.M., Dinauer, M.C. and Henderson, J.P. (2014) Cupric yersiniabactin is a virulence-associated superoxide dismutase mimic. ACS Chem Biol 9, 551 561.
  • Cobine, P., Wickramasinghe, W.A., Harrison, M.D., Weber, T., Solioz, M. and Dameron, C.T. (1999) The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett 445, 27 30.
  • Corbett, D., Schuler, S., Glenn, S., Andrew, P.W., Cavet, J.S. and Roberts, I.S. (2011) The combined actions of the copper-responsive repressor CsoR and copper-metallochaperone CopZ modulate CopA-mediated copper efflux in the intracellular pathogen Listeria monocytogenes. Mol Microbiol 81, 457 472.
  • Cui, Z., Ibrahim, M., Yang, C., Fang, Y., Annam, H., Li, B., Wang, Y., Xie, G.L. et al. (2014) Susceptibility of opportunistic Burkholderia glumae to copper surfaces following wet or dry surface contact. Molecules 19, 9975 9985.
  • Dalecki, A.G., Crawford, C.L. and Wolschendorf, F. (2017) Copper and antibiotics: discovery, modes of action, and opportunities for medicinal applications. Adv Microb Physiol 70, 193 260.
  • Dietl, A.M., Amich, J., Leal, S., Beckmann, N., Binder, U., Beilhack, A., Pearlman, E. and Haas, H. (2016) Histidine biosynthesis plays a crucial role in metal homeostasis and virulence of Aspergillus fumigatus. Virulence 7, 465 476.
  • Ding, C., Festa, R.A., Chen, Y.L., Espart, A., Palacios, Ò., Espín, J., Capdevila, M., Atrian, S. et al. (2013) Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence. Cell Host Microbe 13, 265 276.
  • Djoko, K.Y., Ong, C.Y., Walker, M.J. and McEwan, A.G. (2015) The role of copper and zinc toxicity in innate immune defense against bacterial pathogens. J Biol Chem 290, 18954 18961.
  • Dollwet, H.H.A. and Sorenson, J.R.J. (1985) Historic uses of copper compounds in medicine. Trace Elem Med 2, 80 87.
  • Dwarakanath, S., Chaplin, A.K., Hough, M.A., Rigali, S., Vijgenboom, E. and Worrall, J.A.R. (2012) Response to copper stress in Streptomyces lividans extends beyond genes under direct control of a copper-sensitive operon repressor protein (CsoR). J Biol Chem 287, 17833 17847.
  • Elguindi, J., Wagner, J. and Rensing, C. (2009) Genes involved in copper resistance influence survival of Pseudomonas aeruginosa on copper surfaces. J Appl Microbiol 106, 1448 1455.
  • Emam, H.E., Ahmed, H.B. and Bechtold, T. (2017) In-situ deposition of Cu2O micro-needles for biologically active textiles and their release properties. Carbohydr Polym 165, 255 265.
  • Espírito Santo, C., Taudte, N., Nies, D.H. and Grass, G. (2008) Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces. Appl Environ Microbiol 74, 977 986.
  • Espírito Santo, C., Lam, E.W., Elowsky, C.G., Quaranta, D., Domaille, D.W., Chang, C.J. and Grass, G. (2011) Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol 77, 794 802.
  • Espírito Santo, C., Quaranta, D. and Grass, G. (2012) Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. MicrobiologyOpen 1, 46 52.
  • Faúndez, G., Troncoso, M., Navarrete, P. and Figueroa, G. (2004) Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol 4, 19.
  • Festa, R.A. and Thiele, D.J. (2011) Copper: an essential metal in biology. Curr Biol 21, R877 R883.
  • Festa, R.A., Jones, M.B., Butler-Wu, S., Sinsimer, D., Gerads, R., Bishai, W.R., Peterson, S.N. and Darwin, K.H. (2011) A novel copper-responsive regulon in Mycobacterium tuberculosis. Mol Microbiol 79, 133 148.
  • Fujimori, Y., Sato, T., Hayata, T., Nagao, T., Nakayama, M., Nakayama, T., Sugamata, R. and Suzuki, K. (2012) Novel antiviral characteristics of nanosized copper(I) iodide particles showing inactivation activity against 2009 pandemic H1N1 influenza virus. Appl Environ Microbiol 78, 951 955.
  • Georgatsou, E., Mavrogiannis, L.A., Fragiadakis, G.S. and Alexandraki, D. (1997) The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. J Biol Chem 272, 13786 137892.
  • German, N., Lüthje, F., Hao, X., Rønn, R. and Rensing, C. (2016) Microbial virulence and interactions with metals. Prog Mol Biol Transl Sci 142, 27 49.
  • Ghasemian, E., Naghoni, A., Tabaraie, B. and Tabaraie, T. (2012) In vitro susceptibility of filamentous fungi to copper nanoparticles assessed by rapid XTT colorimetry and agar dilution method. J Mycol Med 22, 322 328.
  • Giannousi, K., Lafazanis, K., Arvanitidis, J., Pantazaki, A. and Dendrinou-Samara, C. (2014) Hydrothermal synthesis of copper based nanoparticles: antimicrobial screening and interaction with DNA. J Inorg Biochem 133, 24 32.
  • Giner-Lamia, J., López-Maury, L., Reyes, J.C. and Florencio, F.J. (2012) The CopRS two-component system is responsible for resistance to copper in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 159, 1806 1818.
  • Giner-Lamia, J., López-Maury, L. and Florencio, F.J. (2015) CopM is a novel copper-binding protein involved in copper resistance in Synechocystis sp. PCC 6803. MicrobiologyOpen 4, 167 185.
  • Giner-Lamia, J., Pereira, S.B., Bovea-Marco, M., Futschik, M.E., Tamagnini, P. and Oliveira, P. (2016) Extracellular proteins: novel key components of metal resistance in cyanobacteria? Front Microbiol 7, 878.
  • Gold, B., Deng, H., Bryk, R., Vargas, D., Eliezer, D., Roberts, J., Jiang, X. and Nathan, C. (2008) Identification of a copper-binding metallothionein in pathogenic mycobacteria. Nat Chem Biol 4, 609 616.
  • Goudarzi, M., Saviz, S., Ghoranneviss, M. and Salar Elahi, A. (2017) Medical equipment antiseptic processes using the atmospheric plasma sprayed copper coatings. J X-Ray Sci Technol 25, 479 485.
  • Grass, G., Rensing, C. and Solioz, M. (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77, 1541 1547.
  • Grossoehme, N., Kehl-Fie, T.E., Ma, Z., Adams, K.W., Cowart, D.M., Scott, R.A., Skaar, E.P. and Giedroc, D.P. (2011) Control of copper resistance and inorganic sulfur metabolism by paralogous regulators in Staphylococcus aureus. J Biol Chem 286, 13522 13531.
  • Guo, Z., Han, J., Yang, X.Y., Cao, K., He, K., Du, G., Zeng, G., Zhang, L. et al. (2015) Proteomic analysis of the copper resistance of Streptococcus pneumoniae. Metallomics 7, 448 454.
  • Gutiérrez, M.F., Malaquias, P., Hass, V., Matos, T.P., Lourenço, L., Reis, A., Loguercio, A.D. and Farago, P.V. (2017) The role of copper nanoparticles in an etch-and-rinse adhesive on antimicrobial activity, mechanical properties and the durability of resin-dentine interfaces. J Dent 61, 12 20.
  • Halbus, A.F., Horozov, T.S. and Paunov, V.N. (2017) Colloid particle formulations for antimicrobial applications. Adv Colloid Interface Sci 249, 134 148.
  • Hang, X., Peng, H., Song, H., Qi, Z., Miao, X. and Xu, W. (2015) Antiviral activity of cuprous oxide nanoparticles against hepatitis C virus in vitro. J Virol Methods 222, 150 157.
  • Hans, M., Mathews, S., Mücklich, F. and Solioz, M. (2016) Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases 11, 018902.
  • Hartemann, P., Goepfert, M. and Blech, M.F. (1995) Bactericidal effect of hydrogen peroxide on Escherichia coli. Ann Médicales de NANCY et de l'Est 34, 85 88.
  • Hasman, H. (2005) The tcrB gene is part of the tcrYAZB operon conferring copper resistance in Enterococcus faecium and Enterococcus faecalis. Microbiology 151, 3019 3025.
  • Hasman, H. and Aarestrup, F.M. (2002) tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptide resistance. Antimicrob Agents Chemother 46, 1410 1416.
  • Hasman, H., Kempf, I., Chidaine, B., Cariolet, R., Ersbøll, A.K., Houe, H., Bruun Hansen, H.C. and Aarestrup, F.M. (2006) Copper resistance in Enterococcus faecium, mediated by the tcrB gene, is selected by supplementation of pig feed with copper sulfate. Appl Environ Microbiol 72, 5784 5789.
  • Hong, R., Kang, T.Y., Michels, C.A. and Gadura, N. (2012) Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli. Appl Environ Microbiol 78, 1776 1784.
  • Huang, R., Wallqvist, A. and Covell, D.G. (2005) Anticancer metal compounds in NCI's tumor-screening database: putative mode of action. Biochem Pharmacol 69, 1009 1039.
  • Inesi, G. (2017) Molecular features of copper binding proteins involved in copper homeostasis. IUBMB Life 69, 211 217.
  • Inkinen, J., Mäkinen, R., Keinänen-Toivola, M.M., Nordström, K. and Ahonen, M. (2017) Copper as an antibacterial material in different facilities. Lett Appl Microbiol 64, 19 26.
  • Jeeves, R.E., Mason, R.P., Woodacre, A. and Cashmore, A.M. (2011) Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans. Yeast 28, 629 644.
  • Karlsson, H.L., Gustafsson, J., Cronholm, P. and Möller, L. (2009) Size-dependent toxicity of metal oxide particles–a comparison between nano- and micrometer size. Toxicol Lett 188, 112 118.
  • Karlström, A.R. and Levine, R.L. (1991) Copper inhibits the protease from human immunodeficiency virus 1 by both cysteine-dependent and cysteine-independent mechanisms. Proc Natl Acad Sci USA 88, 5552 5556.
  • Karpanen, T.J., Casey, A.L., Lambert, P.A., Cookson, B.D., Nightingale, P., Miruszenko, L. and Elliott, T.S. (2012) The antimicrobial efficacy of copper alloy furnishing in the clinical environment: a crossover study. Infect Control Hosp Epidemiol 33, 3 9.
  • Kruk, T., Szczepanowicz, K., Stefańska, J., Socha, R.P. and Warszyński, P. (2015) Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids Surf B Biointerfaces 128, 17 22.
  • Labbé, S., Zhu, Z. and Thiele, D.J. (1997) Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway. J Biol Chem 272, 15951 15958.
  • Ladomersky, E. and Petris, M.J. (2015) Copper tolerance and virulence in bacteria. Metallomics 7, 957 964.
  • Landeen, L.K., Yahya, M.T. and Gerba, C.P. (1989) Efficacy of copper and silver ions and reduced levels of free chlorine in inactivation of Legionella pneumophila. Appl Environ Microbiol 55, 3045 3050.
  • Liochev, S.I. and Fridovich, I. (2002) The Haber-Weiss cycle – 70 years later: an alternative view. Redox Rep 7, 55 57.
  • Liu, X.D. and Thiele, D.J. (1997) Yeast metallothionein gene expression in response to metals and oxidative stress. Methods 11, 289 299.
  • Liu, S. and Zhang, X.X. (2016) Small colony variants are more susceptible to copper-mediated contact killing for Pseudomonas aeruginosa and Staphylococcus aureus. J Med Microbiol 65, 1143 1151.
  • Liu, T., Ramesh, A., Ma, Z., Ward, S.K., Zhang, L., George, G.N., Talaat, A.M., Sacchettini, J.C. et al. (2007) CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol 3, 60 68.
  • Liu, J., Li, F., Liu, C., Wang, H., Ren, B., Yang, K. and Zhang, E. (2014) Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys. Mater Sci Eng C Mater Biol Appl 35, 392 400.
  • Lu, Z.H. and Solioz, M. (2001) Copper-induced proteolysis of the CopZ copper chaperone of Enterococcus hirae. J Biol Chem 276, 47822 47827.
  • Mackie, J., Szabo, E.K., Urgast, D.S., Ballou, E.R., Childers, D.S., MacCallum, D.M., Feldmann, J. and Brown, A.J. (2016) Host-imposed copper poisoning impacts fungal micronutrient acquisition during systemic Candida albicans infections. PLoS ONE 11, e0158683.
  • Macomber, L. and Imlay, J.A. (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci USA 106, 8344 8349.
  • Magnani, D., Barré, O., Gerber, S.D. and Solioz, M. (2008) Characterization of the CopR regulon of Lactococcus lactis IL1403. J Bacteriol 190, 536 545.
  • Maqbool, Q., Iftikhar, S., Nazar, M., Abbas, F., Saleem, A., Hussain, T., Kausar, R., Anwaar, S. et al. (2017) Green fabricated CuO nanobullets via Olea europaea leaf extract shows auspicious antimicrobial potential. IET Nanobiotechnol 11, 463 468.
  • Marcus, S.A., Sidiropoulos, S.W., Steinberg, H. and Talaat, A.M. (2016) CsoR is essential for maintaining copper homeostasis in Mycobacterium tuberculosis. PLoS ONE 11, e0151816.
  • Marvin, M.E., Mason, R.P. and Cashmore, A.M. (2004) The CaCTR1 gene is required for high-affinity iron uptake and is transcriptionally controlled by a copper-sensing transactivator encoded by CaMAC1. Microbiology 150, 2197 2208.
  • Mathews, S., Kumar, R. and Solioz, M. (2015) Copper reduction and contact killing of bacteria by iron surfaces. Appl Environ Microbiol 81, 6399 6403.
  • Mealman, T.D., Blackburn, N.J. and McEvoy, M.M. (2012) Metal export by CusCFBA, the periplasmic Cu(I)/Ag(I) transport system of Escherichia coli. Curr Top Membr 69, 163 196.
  • Mehtar, S., Wiid, I. and Todorov, S.D. (2008) The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study. J Hosp Infect 68, 45 51.
  • Michels, H.T., Noyce, J.O. and Keevil, C.W. (2009) Effects of temperature and humidity on the efficacy of methicillin-resistant Staphylococcus aureus challenged antimicrobial materials containing silver and copper. Lett Appl Microbiol 49, 191 195.
  • Midander, K., Cronholm, P., Karlsson, H.L., Elihn, K., Möller, L., Leygraf, C. and Wallinder, I.O. (2009) Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study. Small 5, 389 399.
  • Mierek-Adamska, A., Tylman-Mojzeszek, W., Znajewska, Z. and Dabrowska, G.B. (2017) Bacterial metallothioneins. Postepy Mikrobiol 56, 171 179.
  • Mikolay, A., Huggett, S., Tikana, L., Grass, G., Braun, J. and Nies, D.H. (2010) Survival of bacteria on metallic copper surfaces in a hospital trial. Appl Microbiol Biotechnol 87, 1875 1879.
  • Mills, S.D., Jasalavich, C.A. and Cooksey, D.A. (1993) A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae. J Bacteriol 175, 1656 1664.
  • Molteni, C., Abicht, H.K. and Solioz, M. (2010) Killing of bacteria by copper surfaces involves dissolved copper. Appl Environ Microbiol 76, 4099 4101.
  • Multhaup, G., Strausak, D., Bissig, K.D. and Solioz, M. (2001) Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance. Biochem Biophys Res Commun 288, 172 177.
  • Nawapan, S., Charoenlap, N., Charoenwuttitam, A., Saenkham, P., Mongkolsuk, S. and Vattanaviboon, P. (2009) Functional and expression analyses of the cop operon, required for copper resistance in Agrobacterium tumefaciens. J Bacteriol 191, 5159 5168.
  • Noyce, J.O., Michels, H. and Keevil, C.W. (2006) Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing. Appl Environ Microbiol 72, 4239 4244.
  • Noyce, J.O., Michels, H. and Keevil, C.W. (2007) Inactivation of influenza A virus on copper versus stainless steel surfaces. Appl Environ Microbiol 73, 2748 2750.
  • Odermatt, A. and Solioz, M. (1995) Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae. J Biol Chem 270, 4349 4354.
  • Ooi, C.E., Rabinovich, E., Dancis, A., Bonifacino, J.S. and Klausner, R.D. (1996) Copper-dependent degradation of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p in the apparent absence of endocytosis. EMBO J 15, 3515 3523.
  • Osman, D., Patterson, C.J., Bailey, K., Fisher, K., Robinson, N.J., Rigby, S.E. and Cavet, J.S. (2013) The copper supply pathway to a Salmonella Cu, Zn-superoxide dismutase (SodCII) involves P(1B)-type ATPase copper efflux and periplasmic CueP. Mol Microbiol 87, 466 477.
  • Outten, F.W., Outten, C.E., Hale, J. and O'Halloran, T.V. (2000) Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR. J Biol Chem 275, 31024 31029.
  • Peuser, V., Glaeser, J. and Klug, G. (2011) The RSP_2889 gene product of Rhodobacter sphaeroides is a CueR homologue controlling copper-responsive genes. Microbiology 157, 3306 3313.
  • Pezza, A., Pontel, L.B., López, C. and Soncini, F.C. (2016) Compartment and signal-specific codependence in the transcriptional control of Salmonella periplasmic copper homeostasis. Proc Natl Acad Sci USA 113, 11573 11578.
  • Pinto, R.J., Daina, S., Sadocco, P., Pascoal Neto, C. and Trindade, T. (2013) Antibacterial activity of nanocomposites of copper and cellulose. Biomed Res Int 2013, 280512.
  • Pontel, L.B. and Soncini, F.C. (2009) Alternative periplasmic copper-resistance mechanisms in Gram negative bacteria. Mol Microbiol 73, 212 225.
  • Prado, V., Vidal, R. and Durán, C. (2012) Application of copper bactericidal properties in medical practice. Rev Médica Chile 140, 1325 1332.
  • Pramanik, A., Laha, D., Bhattacharya, D., Pramanik, P. and Karmakar, P. (2012) A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids Surf B Biointerfaces 96, 50 55.
  • Pyle, B.H., Broadaway, S.C. and McFeters, G.A. (1992) Efficacy of copper and silver ions with iodine in the inactivation of Pseudomonas cepacia. J Appl Bacteriol 72, 71 79.
  • Qadri, S., Haik, Y., Mensah-Brown, E., Bashir, G., Fernandez-Cabezudo, M.J. and Al-Ramadi, B.K. (2017) Metallic nanoparticles to eradicate bacterial bone infection. Nanomedicine 13, 2241 2250.
  • Quaranta, D., Krans, T., Espírito Santo, C., Elowsky, C.G., Domaille, D.W., Chang, C.J. and Grass, G. (2011) Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces. Appl Environ Microbiol 77, 416 426.
  • Rademacher, C. and Masepohl, B. (2012) Copper-responsive gene regulation in bacteria. Microbiology 158, 2451 2464.
  • Rademacher, C., Moser, R., Lackmann, J.W., Klinkert, B., Narberhaus, F. and Masepohl, B. (2012) Transcriptional and posttranscriptional events control copper-responsive expression of a Rhodobacter capsulatus multicopper oxidase. J Bacteriol 194, 1849 1859.
  • Reyes-Jara, A., Latorre, M., López, G., Bourgogne, A., Murray, B.E., Cambiazo, V. and Gonzalez, M. (2010) Genome-wide transcriptome analysis of the adaptive response of Enterococcus faecalis to copper exposure. Biometals 23, 1105 1112.
  • Riggle, P.J. and Kumamoto, C.A. (2000) Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J Bacteriol 182, 4899 4905.
  • Rowland, J.L. and Niederweis, M. (2013) A multicopper oxidase is required for copper resistance in Mycobacterium tuberculosis. J Bacteriol 195, 3724 3733.
  • Sakamoto, K., Agari, Y., Agari, K., Kuramitsu, S. and Shinkai, A. (2010) Structural and functional characterization of the transcriptional repressor CsoR from Thermus thermophilus HB8. Microbiology 156, 1993 2005.
  • San, K., Long, J., Michels, C.A. and Gadura, N. (2015) Antimicrobial copper alloy surfaces are effective against vegetative but not sporulated cells of gram-positive Bacillus subtilis. MicrobiologyOpen 4, 753 763.
  • Schelder, S., Zaade, D., Litsanov, B., Bott, M. and Brocker, M. (2011) The two-component signal transduction system CopRS of Corynebacterium glutamicum is required for adaptation to copper-excess stress. PLoS ONE 6, e22143.
  • Schmidt, M.G., Attaway, H.H., Sharpe, P.A., John, J., Sepkowitz, K.A., Morgan, A., Fairey, S.E., Singh, S. et al. (2012) Sustained reduction of microbial burden on common hospital surfaces through introduction of copper. J Clin Microbiol 50, 2217 2223.
  • Schmidt, M.G., Tuuri, R.E., Dharsee, A., Attaway, H.H., Fairey, S.E., Borg, K.T., Salgado, C.D. and Hirsch, B.E. (2017) Antimicrobial copper alloys decreased bacteria on stethoscope surfaces. Am J Infect Control 45, 642 647.
  • Schwan, W.R., Warrener, P., Keunz, E., Stover, C.K. and Folger, K.R. (2005) Mutations in the cueA gene encoding a copper homeostasis P-type ATPase reduce the pathogenicity of Pseudomonas aeruginosa in mice. Int J Med Microbiol 295, 237 422.
  • Shafeeq, S., Yesilkaya, H., Kloosterman, T.G., Narayanan, G., Wandel, M., Andrew, P.W., Kuipers, O.P. and Morrissey, J.A. (2011) The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae. Mol Microbiol 81, 1255 1270.
  • Shankar, S., Teng, X. and Rhim, J.W. (2014) Properties and characterization of agar/CuNP bionanocomposite films prepared with different copper salts and reducing agents. Carbohydr Polym 114, 484 492.
  • Shi, X., Festa, R.A., Ioerger, T.R., Butler-Wu, S., Sacchettini, J.C., Darwin, K.H. and Samanovic, M.I. (2014) The copper-responsive RicR regulon contributes to Mycobacterium tuberculosis virulence. MBio 5, e00876-13.
  • Singh, K., Senadheera, D.B., Lévesque, C.M. and Cvitkovitch, D.G. (2015) The copYAZ operon functions in copper efflux, biofilm formation, genetic transformation, and stress tolerance in Streptococcus mutans. J Bacteriol 197, 2545 2557.
  • Smaldone, G.T. and Helmann, J.D. (2007) CsoR regulates the copper efflux operon copZA in Bacillus subtilis. Microbiology 153, 4123 4128.
  • Solioz, M. (2002) Role of proteolysis in copper homoeostasis. Biochem Soc Trans 30, 688 691.
  • Solioz, M. and Odermatt, A. (1995) Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J Biol Chem 270, 9217 9221.
  • Solioz, M. and Stoyanov, J.V. (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27, 183 195.
  • Souli, M., Galani, I., Plachouras, D., Panagea, T., Armaganidis, A., Petrikkos, G. and Giamarellou, H. (2013) Antimicrobial activity of copper surfaces against carbapenemase-producing contemporary Gram-negative clinical isolates. J Antimicrob Chemother 68, 852 857.
  • Speer, A., Rowland, J.L., Haeili, M., Niederweis, M. and Wolschendorf, F. (2013) Porins increase copper susceptibility of Mycobacterium tuberculosis. J Bacteriol 195, 5133 5140.
  • Szczypka, M.S. and Thiele, D.J. (1989) A cysteine-rich nuclear protein activates yeast metallothionein gene transcription. Mol Cell Biol 9, 421 429.
  • Terzaghi, B.E. and Sandine, W.E. (1975) Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29, 807 813.
  • Thaden, J.T., Lory, S. and Gardner, T.S. (2010) Quorum-sensing regulation of a copper toxicity system in Pseudomonas aeruginosa. J Bacteriol 192, 2557 2568.
  • Thekkae Padil, V.V. and Černík, M. (2013) Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomedicine 8, 889 898.
  • Thiele, D.J. (1988) ACE1 regulates expression of the Saccharomyces cerevisiae metallothionein gene. Mol Cell Biol 8, 2745 2752.
  • Tian, W.X., Yu, S., Ibrahim, M., Almonaofy, A.W., He, L., Hui, Q., Bo, Z., Li, B. et al. (2012) Copper as an antimicrobial agent against opportunistic pathogenic and multidrug resistant Enterobacter bacteria. J Microbiol 50, 586 593.
  • Usman, M.S., El Zowalaty, M.E., Shameli, K., Zainuddin, N., Salama, M. and Ibrahim, N.A. (2013) Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine 8, 4467 4479.
  • Vats, N. and Lee, S.F. (2001) Characterization of a copper-transport operon, copYAZ, from Streptococcus mutans. Microbiology 147, 653 662.
  • Vincent, M., Hartemann, P. and Engels-Deutsch, M. (2016) Antimicrobial applications of copper. Int J Hyg Environ Health 219, 585 591.
  • Waidner, B., Melchers, K., Stähler, F.N., Kist, M. and Bereswill, S. (2005) The Helicobacter pylori CrdRS two-component regulation system (HP1364/HP1365) is required for copper-mediated induction of the copper resistance determinant CrdA. J Bacteriol 187, 4683 4688.
  • Wang, Z., Li, N., Zhao, J., White, J.C., Qu, P. and Xing, B. (2012) CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chem Res Toxicol 25, 1512 1521.
  • Ward, S.K., Abomoelak, B., Hoye, E.A., Steinberg, H. and Talaat, A.M. (2010) CtpV: a putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol Microbiol 77, 1096 1110.
  • Warnes, S.L. and Keevil, C.W. (2011) Mechanism of copper surface toxicity in vancomycin-resistant enterococci following wet or dry surface contact. Appl Environ Microbiol 77, 6049 6059.
  • Warnes, S.L. and Keevil, C.W. (2013) Inactivation of norovirus on dry copper alloy surfaces. PLoS ONE 8, e75017.
  • Warnes, S.L. and Keevil, C.W. (2016) Lack of involvement of fenton chemistry in death of methicillin-resistant and methicillin-sensitive strains of Staphylococcus aureus and destruction of their genomes on wet or dry copper alloy surfaces. Appl Environ Microbiol 82, 2132 2136.
  • Warnes, S.L., Green, S.M., Michels, H.T. and Keevil, C.W. (2010) Biocidal efficacy of copper alloys against pathogenic enterococci involves degradation of genomic and plasmid DNAs. Appl Environ Microbiol 76, 5390 5401.
  • Warnes, S.L., Caves, V. and Keevil, C.W. (2012) Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria. Environ Microbiol 14, 1730 1743.
  • Warnes, S.L., Summersgill, E.N. and Keevil, C.W. (2015) Inactivation of murine norovirus on a range of copper alloy surfaces is accompanied by loss of capsid integrity. Appl Environ Microbiol 81, 1085 1091.
  • Weaver, L., Michels, H.T. and Keevil, C.W. (2008) Survival of Clostridium difficile on copper and steel: futuristic options for hospital hygiene. J Hosp Infect 68, 145 151.
  • Weaver, L., Noyce, J.O., Michels, H.T. and Keevil, C.W. (2010) Potential action of copper surfaces on meticillin-resistant Staphylococcus aureus. J Appl Microbiol 109, 2200 2205.
  • Wei, X., Yang, Z., Wang, Y., Tay, S.L. and Gao, W. (2014) Polymer antimicrobial coatings with embedded fine Cu and Cu salt particles. Appl Microbiol Biotechnol 98, 6265 6274.
  • Weissman, Z., Berdicevsky, I., Cavari, B.Z. and Kornitzer, D. (2000) The high copper tolerance of Candida albicans is mediated by a P-type ATPase. Proc Natl Acad Sci USA 97, 3520 3525.
  • Wheeldon, L.J., Worthington, T., Lambert, P.A., Hilton, A.C., Lowden, C.J. and Elliott, T.S.J. (2008) Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: the germination theory. J Antimicrob Chemother 62, 522 525.
  • Wiemann, P., Perevitsky, A., Lim, F.Y., Shadkchan, Y., Knox, B.P., Landero Figueora, J.A., Choera, T., Niu, M. et al. (2017) Aspergillus fumigatus copper export machinery and reactive oxygen intermediate defense counter host copper-mediated oxidative antimicrobial offense. Cell Rep 19, 1008 1021.
  • Wilks, S.A., Michels, H. and Keevil, C.W. (2005) The survival of Escherichia coli O157 on a range of metal surfaces. Int J Food Microbiol 105, 445 454.
  • Wolschendorf, F., Ackart, D., Shrestha, T.B., Hascall-Dove, L., Nolan, S., Lamichhane, G., Wang, Y., Bossmann, S.H. et al. (2011) Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 108, 1621 1626.
  • Woodacre, A., Mason, R.P., Jeeves, R.E. and Cashmore, A.M. (2008) Copper-dependent transcriptional regulation by Candida albicans Mac1p. Microbiology 154, 1502 1512.
  • Yamaguchi-Iwai, Y., Serpe, M., Haile, D., Yang, W., Kosman, D.J., Klausner, R.D. and Dancis, A. (1997) Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1. J Biol Chem 272, 17711 17718.
  • Young, C.A., Gordon, L.D., Fang, Z., Holder, R.C. and Reid, S.D. (2015) Copper tolerance and characterization of a copper-responsive operon, copYAZ, in an M1T1 clinical strain of Streptococcus pyogenes. J Bacteriol 197, 2580 2592.
  • Zhang, X.X. and Rainey, P.B. (2008) Regulation of copper homeostasis in Pseudomonas fluorescens SBW25. Environ Microbiol 10, 3284 3294.
  • Zhang, E., Li, F., Wang, H., Liu, J., Wang, C., Li, M. and Yang, K. (2013) A new antibacterial titanium-copper sintered alloy: preparation and antibacterial property. Mater Sci Eng C Mater Biol Appl 33, 4280 4287.
  • Zhang, P., Zhang, D., Zhao, X., Wei, D., Wang, Y. and Zhu, X. (2016) Effects of CTR4 deletion on virulence and stress response in Cryptococcus neoformans. Antonie Van Leeuwenhoek 109, 1081 1090.
  • Zheng, S., Chang, W., Li, C. and Lou, H. (2016) Als1 and Als3 regulate the intracellular uptake of copper ions when Candida albicans biofilms are exposed to metallic copper surfaces. FEMS Yeast Res 16, fow029.
  • Zhu, L., Elguindi, J., Rensing, C. and Ravishankar, S. (2012) Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica. Food Microbiol 30, 303 310.
  • Zimmermann, M., Udagedara, S.R., Sze, C.M., Ryan, T.M., Howlett, G.J., Xiao, Z. and Wedd, A.G. (2012) PcoE–a metal sponge expressed to the periplasm of copper resistance Escherichia coli. Implication of its function role in copper resistance. J Inorg Biochem 115, 186 197.
Close (esc)

Popup

Use this popup to embed a mailing list sign up form. Alternatively use it as a simple call to action with a link to a product or a page.

Age verification

By clicking enter you are verifying that you are old enough to consume alcohol.

Search

Shopping Cart

Your cart is currently empty.
Shop now